
*
e-mail: Adam.Bird@amecfw.com

** e-mail: David.Long@amecfw.com

*** e-mail: Geoff.Dobson@amecfw.com

Implementing Shared Memory Parallelism in MCBEND

Adam Bird1;*, David Long1;**, and Geoff Dobson1;***
1
Amec Foster Wheeler, Kings Point House, Queen Mother Square, Poundbury, Dorchester, Dorset, DT1 3BW, United Kingdom

Abstract. MCBEND is a general purpose radiation transport Monte Carlo code from AMEC Foster Wheelers’s

ANSWERS
®
 Software Service. MCBEND is well established in the UK shielding community for radiation shielding

and dosimetry assessments. The existing MCBEND parallel capability effectively involves running the same

calculation on many processors. This works very well except when the memory requirements of a model restrict the

number of instances of a calculation that will fit on a machine. To more effectively utilise parallel hardware OpenMP

has been used to implement shared memory parallelism in MCBEND. This paper describes the reasoning behind the

choice of OpenMP, notes some of the challenges of multi-threading an established code such as MCBEND and

assesses the performance of the parallel method implemented in MCBEND.

1 Introduction

MCBEND[1] is a well-established powerful Monte Carlo

software tool for general radiation transport analysis for

shielding and dosimetry applications. MCBEND is

developed and licensed for use by AMEC Foster

Wheeler’s ANSWERS Software Service. The MCBEND

package comprises not only the Monte Carlo code itself

but also nuclear data libraries, user documentation,

productivity tools of various kinds and user support

services. Supporting geometry model visualisation and

verification tools are also available.

The existing parallel capability in MCBEND known

as the ‘grid’ option, effectively involves running the same

calculation on many processors and combining the

results. Because there is minimal communication

required between processes the method scales almost

linearly. MCBEND performs the combining of results

and the user is presented with the output as if from a

single run. When the accompanying user interface

VisualWorkshop[2] is used the user is largely unaware of

the activity. This system works well except when the

memory requirements of the model are such that it

reduces the number of instances that will fit on a

workstation or node of a cluster.

To more effectively make use of parallel hardware the

decision was taken to implement multi-threading in

MCBEND in order to maximise the potential for shared-

memory, and eliminating the memory constraints of the

existing `grid' option. Multi-threading has been achieved

within MCBEND using OpenMP[3]. The rationale for

implementing a shared memory model using OpenMP is

given in Section 1.1.

A description of the major design considerations and

choices when implementing OpenMP are given in

Section 2. Here, specific attention is given to the shared

memory data management within a MCBEND

calculation. Further implementation details are also given

for the accumulation of scored quantities (Section 2.1)

and the necessary requirement of re-producible results

(Section 2.2) through the design of a new random number

generator. Finally, the functional specification for the

OpenMP multi-threaded parallel version of MCBEND is

given in Section 2.3

1.1 Why OpenMP

When implementing a shared memory multi-threaded

model there are several existing application technologies

from which to choose. The following list gives the

rationale behind the choice of OpenMP for MCBEND

 OpenMP is a mature technology with detailed

documentation and advice on its implementation.

 OpenMP is implemented by the compiler and

additional software is not required by clients to run on

a given system.

 The multi-threaded behaviour is controlled by

directives in comment lines within the Fortran source

code. Since the implementation of OpenMP is applied

on at coarse gain level over the main sample loop of a

MCBEND calculation, see Section 2, load balancing

considerations do not apply. Therefore, relatively few

directives are required, making the implementation of

OpenMP less intrusive on the existing code base and

making future maintenance an easier task.

 OpenMP directives can be turned on or off, meaning

that the same source code can be compiled as a

sequential or parallel application. This is particularly

useful when having a code base shared with other

ANSWERS products and for debugging and

maintenance purposes.

2 OpenMP Implementation.

In a simplified form a MCBEND calculation can be

viewed in three stages:

Stage 1: Reading and set up, input data is read, data

libraries are read and the data are pre-processed ready for

the calculation to begin.

Stage 2: The calculation, basically a loop processing

where individual particle histories are tracked from

source through interaction events with the materials in the

model until it escapes via absorption or moves out of the

geometric or energy domain of the problem. During this

processing, scores (tallies) are accumulated. The process

is repeated until a specified number of histories are

reached or a time limit is exceeded.

Stage 3: Post processing, where scored data are analysed

and formatted for writing to output files.

Typically the reading, set up, post-processing and

output, performed in stages 1 and 3, constitute <1% of the

total run time for a MCBEND calculation. As such, there

is very little to gain from the significant amount of effort

needed to apply multi-threading to stages 1 and 3.

Therefore, the multi-threaded parallelisation of

MCBEND has only been applied to stage 2, the main

calculation. The basis of this implementation can be seen

by the simple ‘fork join’ model detailed in figure 1.

Figure 1. Multi-threading model for MCBEND.

Since each ‘sample history’ within stage 2 of a

MCBEND shielding calculation is statistically

independent from all the others, implementing multi-

threading to the simple model presented in figure 1 is

conceptually a simple problem involving a single coarse

grain parallel region which encompasses the main

sampling loop. A finer grain approach, that is using

OpenMP to parallelise local sections of the code, for

example, loops, was considered but it was decided that it

would likely not deliver the performance or reduction of

memory requirements desired.

When designing and implementing the coarse gain

multi-threaded region within MCBEND, the most

important consideration was for data to be correctly

managed. The data within stage 2 of a MCBEND

calculation fall into the following three categories.

Thread-private: Data which is private to a specific

thread and should not be accessed, read from or write to,

by any other thread running in the parallel region.

Examples are the current attributes of individual sample

histories such as the location, direction and energy.

Global read: Data which all threads within the parallel

region can read, such as material cross-section values and

data structures describing the geometry of the problem.

Global read-write: Data which all threads within the

parallel region can read from and write to, such as

scoring tally accumulators which are updated within the

main sample loop when necessary.

With regards to data management it is a requirement

that all thread-private data associated with a given sample

should not be corrupted by other threads within the

parallel region. Also, as global data cannot be specified

within OpenMP as read-only, attention must be given to

avoid the potential for so called ‘data race’ conditions

when multiple threads within the parallel region have

read and write access to the same variable. Violation of

these conditions can lead to incorrect or irreproducible

calculation results (reproducibility is necessary for

verification, see Section 3).

Within the parallel region all thread-private data is

duplicated for each individual thread. It was therefore

critical to intelligently analyse the data present within the

parallel region to identify a minimum set that needs to be

thread-private. Having unnecessary amounts of thread-

private data increases both the processing overhead of a

multi-threaded application and the amount of memory

used, which, in the limit that everything is declared

thread-private, would mean that a multi-threaded

MCBEND would have no advantage over the current

‘grid’ option.

The main effort in implementing multi-threading

within MCBEND was to determine which data should be

thread-private, shared globally but read only, or shared

globally and writeable by all threads. In order to feasibly

implement the correct assignment of all data within the

parallel region, parts of the code and data structures were

re-factored. The most challenging aspect of this process

was to ensure that Fortran derived data types requiring to

be thread-private were correctly initialised within the

parallel region, as the OpenMP standard does not ‘deep

copy’ such data structures, and therefore these had to be

achieved explicitly.

Aside from the complexities of data management, the

implementation of OpenMP within MCBEND has the

following basic structure.

 Before entering the main parallel region, a global

shared copy is made of all derived data type structures

which are required to be thread-private.

 The main parallel region is opened.

Process History (Thread 1)

Next History

Process History (Thread 2)

Next History

Process History (Thread n)

Next History

Post Process and

Output (Thread 1)

Sequential Section Sequential Section Parallel Section

Read and setup
(Thread 1)

 Thread-private copies of derived data types are

created for each thread using globally shared initial

values.

 The number of samples within the calculation is

divided across the number of active threads using an

OpenMP parallel ‘DO’ loop.

 Individual samples are tracked in parallel until all

histories have been completed, with contributions

from each sample to scoring tallies accumulated

where necessary (see Section 2.1 for further details).

 Once tracking has been completed and the parallel

‘DO’ loop has been exited, any diagnostic data which

has been accumulated within each individual thread is

combined.

 The main parallel region is closed.

 Output files are generated sequentially.

In addition to the data management and basic

structure described above, the final design of the

OpenMP implementation required consideration of two

remaining issues; the appropriate approach for

accumulating scored quantities within the parallel region

and the design of a new random number generator which

generates reproducible calculation results.

2.1 Scoring Tallies

During the main calculation it is necessary to regularly

update values from each sample to scoring tallies within

the parallel region. For the OpenMP implementation,

scoring is restricted to the Unified Tally (UT) feature of

MCBEND, see Section 2.3. The use of UT scoring

meshes can impose large memory usage on a MCBEND

calculation, specifically when multiple fine resolution

meshes are used. It is therefore impractical to define the

data structures which define the UT scoring meshes as

thread-private since large amounts of memory would be

copied for each thread used.

Instead it was decided that the data structures

responsible for storing accumulated scoring results would

be shared globally, with each thread in the parallel region

having write access. In order to avoid ‘data race’

conditions and ensure the validity of scored results, only

one thread at a time is allowed to update values within a

scoring mesh, achieved using the OpenMP ‘ATOMIC’

directive. When multiple threads attempt to

synchronously update the same scoring mesh then any

number of threads above unity are forced to wait idle

(blocked) until the current thread has finished updating.

While using shared global data for UT scoring meshes

does not require duplicating large amounts of memory, it

has the potential to limit the performance of the code

when increasing the number of processors used. When

large numbers of threads are active in the parallel region,

the likelihood that threads are blocked while updating

scoring meshes is increased. This can result in a reduction

of the performance gained from using additional

processors, i.e. non-linear scaling.

While the issue of having shared global UT scoring

mesh data potentially reducing the scaling performance is

a genuine concern, it is overridden by the practical

limitations duplicating thread-private UT meshes has on

the memory requirements of typical system architectures

used to perform MCBEND calculations. Since the

maximum number of active threads for typical systems

running MCBEND calculations is currently of the order

of 10’s, scaling issues relating to scoring within UT

meshes are not expected to be fundamentally limiting to

the performance of calculations. Looking to the future,

as numbers of available cores increases further thought

may need to be given to the treatment or scoring meshes.

2.2 Random Number Generator

The Monte-Carlo method of a MCBEND calculation uses

random numbers to decide the outcome of every event

that occurs within a sample history. In the sequential

version of MCBEND each random number is provided by

a combined lagged Fibonacci generator and linear

congruential random number generator (RNG). The RNG

provides a sequence of pseudo-random numbers which

can be based on an initial user provided seed. If identical

seeds are used for the same calculation then the same

random number sequence will be generated enabling

calculations to be exactly re-produced.

Unlike the sequential version of MCBEND, within

the main sampling loop of the multi-threaded parallel

region the exact sequence of samples is undetermined and

will be different each time the same calculation is

performed. Here, the n
th

 random number using the

sequential RNG’s will be used for a different purpose,

creating different results, making it impossible to re-

produce a calculation exactly.

In order to provide re-producible calculation results a

new RNG has been designed for use within the

multithreaded parallel region. The new RNG is seeded by

a user supplied value (if present) and the unique sample

number of the history being tracked. This new ‘thread-

safe’ RNG therefore produces a unique random sequence

for each sample history, which is independent of the

order in which samples are tracked. This allows a direct

comparison between the results from a sequential

calculation with those from a multi-threaded parallel

calculation, or indeed multi-threaded parallel calculations

generated with differing numbers of threads. The ability

to generate such reproducible calculation results is

essential for verification of the multi-threaded parallel

version of MCBEND as detailed in Section 3. The thread-

safe RNG is the default mode when performing multi-

threaded parallel MCBEND calculations.

2.3 Functional Specification

The implementation of OpenMP does not cover all of

the features contained within MCBEND; implementation

has been limited to a subset of the more modern

functional units associated with both neutron and gamma

particle tracking and scoring. The main functionality

omissions that will be included later are the IGES based

CAD import and electron tracking. Other omissions

include the DICE and multi group collision processing,

legacy source options and some of the more advanced

variance reduction methods. OpenMP multithreading has

been applied to the following functionality within

MCBEND;

 FG Simple body geometry, including polygon surface

CAD import.

 Unified Tally.

 BINGO (Neutron and Gamma-ray collision

processing).

 Splitting and Roulette (variance reduction).

 Dump and Restart.

 Hole Geometry (Woodcock tracking).

 Looping.

3 Verification

When creating the multi-threaded parallel version of

MCBEND, verification that the developed code is correct

is of the highest importance. The approach for

verification was as follows;

 An ‘intermediate’ MCBEND was created that used

the new random number generator, detailed in

Section 2.2, with no other modifications.

 Each calculation in the test set, see Section 4, was

performed using a sequential version of the

‘intermediate’ MCBEND.

 The results from the ‘intermediate’ MCBEND were

compared against those from a standard MCBEND

run. While the exact comparison of results for each

test case is not possible they were confirmed to be

statistically equivalent, which provides evidence that

the new thread-safe RNG is producing the same

distribution (to within acceptable limits) of random

numbers as the RNG in the standard MCBEND.

 The results from the parallel OpenMP MCBEND

were compared with identically seeded results from

the ‘intermediate’ MCBEND and an exact match was

expected.

Using this intermediate MCBEND allows us to prove

(for the cases in the test set) that the introduction of

multi-threading has not changed the basic calculation.

Here, identical comparisons are only possible due to the

new thread-safe RNG.

4 Test Set

For verification purposes the test set comprised 43 cases

from the standard MCBEND verification set. The

reduced functionality of the multi-threaded MCBEND

necessitated this reduced set. Six of these models were

used for performance testing of the multi-threaded

version of MCBEND. This subset was chosen to cover

the range of functionality that has been multi-threaded, as

detailed in Section 2.3, including both FG and Hole

geometry features, variance reduction through splitting

and importance mesh generation, scoring of flux and

response within UT meshes, different source options and

collision type processing for neutron, gamma and coupled

cases. A brief description of each test is given below.

 311_bingo: An infinite slab model with a

monoenergetic uniform source. Scoring of flux occurs

in a user supplied importance map mesh when

boundaries are crossed.

 fuel_flask_gamma: A real world fuel flask example

for gamma-ray dose rate calculations. Includes

general, nest and array part FG features. Importance

mesh is generated using the Calculate option and

scoring occurs for both flux and response functions.

 s17_t002: Test of the Unified Tally unit for a gamma

collision case with a line source.

 s17_tab001: Uses the pipe hole geometry with

neutron collision processing. Uses looping

functionality to produce tabular output for both flux

and response function scored in UT mesh.

 v2_aspis_onestep: A coupled neutron-gamma case

within a complex general part geometry. Scoring is

for both flux and response function in a UT mesh.

 v2_b2_hole: Similar to the fuel_flask_gamma test

case with the inclusion of Square and Plate hole

geometry features.

5 Results

Performance testing of the multi-threaded version of

MCBEND was performed on both Windows and Linux

platforms. For Windows the testing was run on a

standalone machine which has 12 processors. For Linux

the testing was run on a single node of a HPC which has

16 processors. For each platform the multi-threaded

version was compiled using the Intel Fortran 2015

compiler with the appropriate OpenMP option selected.

All test cases were run with the number of active

threads in the parallel region ranging from unity to the

maximum allowed for the specific platform, 12 for

Windows and 16 for Linux. The results from all

calculations were compared to those from the

‘intermediate’ version of MCBEND and were found to

match identically.

Performance results were obtained by measuring the

total computer processing unit time spent within the

parallel region and comparing this with timings over the

same code region (the main calculation sampling loop)

for the ‘intermediate’ version. All performance timings

were calculated from wall clock times obtained from calls

to the Fortran system_clock function

5.1 Scaling

Scaling results for the v2_aspis_onestep test case from

Windows and Linux are shown in figures 2 and 3

respectively. Here the scaling factor is plotted as a

function of the number of threads used in the calculation.

For each plot there are two scaling factors defined as,

 and

where REFseq is the reference time using the

sequential ‘intermediate’ version of the code, REF1T is

the calculation time from the OpenMP version using a

single thread and RUN is the calculation time from the

OpenMP version for the number of threads being used

From figure 2 we find that on Windows the scaling

factors when using the sequential reference times follow

a linear trend based on the number of threads used,

however with a constant offset from the exact (‘perfect’)

linear scaling trend shown in black. Defining an offset

factor as,

the offset between the OpenMP results and the exact

linear trend is approximately 50%, i.e. for 6 threads the

speed up factor is 4 and for 12 threads the speed up factor

is 8.

The linear trend seen in the scaling factors of figure 2

are a positive sign that OpenMP has been implemented

correctly, and that performance issues related to the

scoring (noted in Section 2.1) are not apparent when

using the order of 10 threads. However, the relatively

large offset factor noted above is less positive. While an

offset factor is always expected when implementing

OpenMP a value of 50% is greater than expected. A

discussion of reasons behind this offset factor is given in

Section 6.

Figure 2. Scaling results for the v2_aspis_onestep test case on

Windows. (blue) Scaling factor when the sequential model is

used as reference run time. (red) Scaling factor when the

OpenMP model with a single thread is used as the reference run

time. (black) Exact linear scaling.

Figure 3. Scaling results for the v2_aspis_onestep test case on

Linux. (blue) Scaling factor when the sequential model is used

as reference run time. (red) Scaling factor when the OpenMP

model with a single thread is used as the reference run time.

(black) Exact linear scaling.

From figure 3 we find that the scaling results for

Linux have the same form as those found for Windows.

The scaling factors again follow a linear trend based on

the number of threads used. However the offset factor

seen when using the sequential reference times are larger

than those found under Windows. Here the offset factor is

of the order 120%, i.e using 8 threads results in a scaling

factor of slightly less than 4 and using 16 threads results

is a scaling factor of slightly less than 8.

It should be noted that all models within the test set

exhibit scaling behaviour of the same form as that shown

for the v2_aspis_onestep case, and as such these results

are not displayed.

5.2 Test Set Performance

In addition to the scaling results presented above, the

performance of all test set models under Windows and

Linux are presented in tables 1 and 2 respectively. Here,

SFSEQ is the scaling factor when using sequential times as

the reference, SF1T is the scaling factor when using time

from OpenMP with a single thread as the reference and

the RUN times are those obtained with the maximum

number of threads available on each platform,

Table 1. Windows test set performance results.

Test Name REFseq(s) REF1T(s) RUN(s) SFseq SF1T

311_bingo 42.29 68.89 6.77 6.24 10.17

fuel_flask_gamma 94.64 119.12 12.54 7.54 9.49

S17_t002 32.51 46.69 4.6 7.06 10.14

S17_tab001 288.47 288.23 30.60 9.42 9.41

v2_aspis_onestep 100.76 128.09 12.43 8.10 10.30

v2_b2_holw 114.75 149.82 14.60 7.85 10.26

Table 2. Linux test set performance results.

Test Name REFseq(s) REF1T(s) RUN(s) SFseq SF1T

311_bingo 14.71 35.15 2.37 6.2 14.81

fuel_flask_gamma 33.6 59.75 6.38 5.26 9.35

S17_t002 10.86 21.21 1.96 5.53 10.81

S17_tab001 100.12 180.56 19.24 5.2 9.38

v2_aspis_onestep 29.41 59.54 4.05 7.26 14.70

v2_b2_holw 39.95 70.11 7.99 4.99 8.76

From table 1 we find that the scaling factor when

using the sequential reference times ranges from ~6-9.5

when using the maximum 12 threads. The offset factor

for these results ranges from ~25-100% with an average

offset factor of ~60%.

From table 2 we find that the scaling factor when

using the sequential reference times ranges from ~5-7

when using the maximum 16 threads. The offset factor

for these results ranges from ~120-200% with an average

offset factor of ~180%. The performance results for the

Linux platform are therefore consistently poorer than

those seen under Windows.

6 Discussion and Conclusions

The magnitude of the difference in scaling factors

observed when the OpenMP model with a single thread

and the sequential model were used as the reference was

not expected. The same source code was used to build

the sequential and OpenMP versions that were used for

performance testing. The only difference was the build

option to enable OpenMP. What we have observed is

that OpenMP running a single thread is approximately

twice as slow as sequential code on Windows and

between two and three times as slow on Linux.

An analysis of this performance issue using a simple

test program revealed a problem associated with

accessing data that is private to a thread but declared

outside the scope of the parallel region, for example,

Fortran module data declared using the OpenMP

‘THREADPRIVATE’ clause. For production code we

use the Intel Fortran compiler and we have seen the

problem using versions 13, 15 & 16 on the Windows and

Linux operating systems. Intel has informed us that the

performance issue is caused by additional run time

checking that the data exists. Intel suggested not using

THREADPRIVATE. This solution would require

considerable re-factoring and is not a desirable option for

us at this time.

Trials with version 6.1 of the Gfortran compiler on

Linux do not show this problem and the difference

between the OpenMP model with a single thread and the

sequential case is of the order of a few percent. We are

considering using an alternative compiler for the

production version of the OpenMP MCBEND.

Another aspect of the performance is the memory use,

especially as reducing the memory requirements of a

parallel run is the main driver for this work. A multi-

threaded case uses more memory than a sequential case

but less than the equivalent ‘grid’ case. For example, a

calculation using 12 threads uses four times the memory

of a sequential calculation. This is a significant saving

compared to the ‘grid’ option.

In conclusion we are very pleased with the linear

nature of the scaling graphs which show, at least for the

current test cases and current number of threads, that we

have not yet reached a point where there is excessive

interaction between threads. The main objective of

reducing the memory requirements of a parallel

calculation by using OpenMP has been met. The highest

priority for us is to effectively remove the difference in

offset factor between OpenMP with a single thread and

the sequential case before we would consider a

production version of MCBEND with multi-threading.

References

1. P. Cowan, G. Dobson, J. Martin, Release of

MCBEND11, ICRS12-RPSD2012, Nara, Japan.

2. A. Bird and T. Fry, Visual Workshop 2: A Model

Viewer, Editor and Results Display Package for the

Answers Shielding and Criticality Codes, ICRS12-

RPSD2012, Nara, Japan.

3. OpenMP Architecture Review Board OpenMP

Application Program Interface Version 3.0, (2008).

