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Abstract. MCBEND is a general purpose radiation transport Monte Carlo code from AMEC Foster Wheelers’s 

ANSWERS
®
 Software Service.  MCBEND is well established in the UK shielding community for radiation shielding

and dosimetry assessments. The existing MCBEND parallel capability effectively involves running the same 

calculation on many processors.  This works very well except when the memory requirements of a model restrict the 

number of instances of a calculation that will fit on a machine. To more effectively utilise parallel hardware OpenMP 

has been used to implement  shared memory parallelism in MCBEND.  This paper describes the reasoning behind  the 

choice of OpenMP, notes some of the challenges of multi-threading an established code such as MCBEND and 

assesses the performance of the parallel  method implemented in MCBEND.  

1 Introduction 

MCBEND[1] is a well-established powerful Monte Carlo 

software tool for general radiation transport analysis for 

shielding and dosimetry applications. MCBEND is 

developed and licensed for use by AMEC Foster 

Wheeler’s ANSWERS Software Service.  The MCBEND 

package comprises not only the Monte Carlo code itself 

but also nuclear data libraries, user documentation, 

productivity tools of various kinds and user support 

services. Supporting geometry model visualisation and 

verification tools are also available. 

The existing parallel capability in MCBEND known 

as the ‘grid’ option, effectively involves running the same 

calculation on many processors and combining the 

results. Because there is minimal communication 

required between processes the method scales almost 

linearly. MCBEND performs the combining of results 

and the user is presented with the output as if from a 

single run. When the accompanying user interface 

VisualWorkshop[2] is used the user is largely unaware of 

the activity.  This system works well except when the 

memory requirements of the model are such that it 

reduces the number of instances that will fit on a 

workstation or node of a cluster.  

To more effectively make use of parallel hardware the 

decision was taken to implement multi-threading in 

MCBEND in order to maximise the potential for shared-

memory, and eliminating the memory constraints of the 

existing `grid' option. Multi-threading has been achieved 

within MCBEND using OpenMP[3]. The rationale for 

implementing a shared memory model using OpenMP is 

given in Section 1.1.  

A description of the major design considerations and 

choices when implementing OpenMP are given in 

Section 2. Here, specific attention is given to the shared 

memory data management within a MCBEND 

calculation. Further implementation details are also given 

for the accumulation of scored quantities (Section 2.1) 

and the necessary requirement of re-producible results 

(Section 2.2) through the design of a new random number 

generator. Finally, the functional specification for the 

OpenMP multi-threaded parallel version of MCBEND is 

given in Section 2.3 

1.1 Why OpenMP 

When implementing a shared memory multi-threaded 

model there are several existing application technologies 

from which to choose. The following list gives the 

rationale behind the choice of OpenMP for MCBEND 

 OpenMP is a mature technology with detailed

documentation and advice on its implementation.

 OpenMP is implemented by the compiler and

additional software is not required by clients to run on

a given system.

 The multi-threaded behaviour is controlled by

directives in comment lines within the Fortran source

code. Since the implementation of OpenMP is applied

on at coarse gain level over the main sample loop of a

MCBEND calculation, see Section 2, load balancing

considerations do not apply. Therefore, relatively few



 

 

directives are required, making the implementation of 

OpenMP less intrusive on the existing code base and 

making future maintenance an easier task. 

 OpenMP directives can be turned on or off, meaning 

that the same source code can be compiled as a 

sequential or parallel application. This is particularly 

useful when having a code base shared with other 

ANSWERS products and for debugging and 

maintenance purposes. 

2 OpenMP Implementation. 

In a simplified form a MCBEND calculation can be 

viewed in three stages: 

Stage 1: Reading and set up, input data is read, data 

libraries are read and the data are pre-processed ready for 

the calculation to begin. 

Stage 2: The calculation, basically a loop processing 

where individual particle histories are tracked from 

source through interaction events with the materials in the 

model until it escapes via absorption or moves out of the 

geometric or energy domain of the problem. During this 

processing, scores (tallies) are accumulated. The process 

is repeated until a specified number of histories are 

reached or a time limit is exceeded. 

Stage 3: Post processing, where scored data are analysed 

and formatted for writing to output files. 

Typically the reading, set up, post-processing and 

output, performed in stages 1 and 3, constitute <1% of the 

total run time for a MCBEND calculation. As such, there 

is very little to gain from the significant amount of effort 

needed to apply multi-threading to stages 1 and 3. 

Therefore, the multi-threaded parallelisation of 

MCBEND has only been applied to stage 2, the main 

calculation. The basis of this implementation can be seen 

by the simple ‘fork join’ model detailed in figure 1. 

 

 

Figure 1. Multi-threading model for MCBEND. 

Since each ‘sample history’ within stage 2 of a 

MCBEND shielding calculation is statistically 

independent from all the others, implementing multi-

threading to the simple model presented in figure 1 is 

conceptually a simple problem involving a single coarse 

grain parallel region which encompasses the main 

sampling loop.  A finer grain approach, that is using 

OpenMP to parallelise local sections of the code, for 

example, loops, was considered but it was decided that it 

would likely not deliver the performance or reduction of 

memory requirements desired. 

When designing and implementing the coarse gain 

multi-threaded region within MCBEND, the most 

important consideration was for data to be correctly 

managed. The data within stage 2 of a MCBEND 

calculation fall into the following three categories. 

Thread-private: Data which is private to a specific 

thread and should not be accessed, read from or write to, 

by any other thread running in the parallel region. 

Examples are the current attributes of individual sample 

histories such as the location, direction and energy. 

Global read: Data which all threads within the parallel 

region can read, such as material cross-section values and 

data structures describing the geometry of the problem. 

Global read-write: Data which all threads within the 

parallel region can read from and write to, such as 

scoring tally accumulators which are updated within the 

main sample loop when necessary. 

With regards to data management it is a requirement 

that all thread-private data associated with a given sample 

should not be corrupted by other threads within the 

parallel region. Also, as global data cannot be specified 

within OpenMP as read-only, attention must be given to 

avoid the potential for so called ‘data race’ conditions 

when multiple threads within the parallel region have 

read and write access to the same variable. Violation of 

these conditions can lead to incorrect or irreproducible 

calculation results (reproducibility is necessary for 

verification, see Section 3). 

Within the parallel region all thread-private data is 

duplicated for each individual thread. It was therefore 

critical to intelligently analyse the data present within the 

parallel region to identify a minimum set that needs to be 

thread-private. Having unnecessary amounts of thread-

private data increases both the processing overhead of a 

multi-threaded application and the amount of memory 

used, which, in the limit that everything is declared 

thread-private, would mean that a multi-threaded 

MCBEND would have no advantage over the current 

‘grid’ option. 

The main effort in implementing multi-threading 

within MCBEND was to determine which data should be 

thread-private, shared globally but read only, or shared 

globally and writeable by all threads. In order to feasibly 

implement the correct assignment of all data within the 

parallel region, parts of the code and data structures were 

re-factored. The most challenging aspect of this process 

was to ensure that Fortran derived data types requiring to 

be thread-private were correctly initialised within the 

parallel region, as the OpenMP standard does not ‘deep 

copy’ such data structures, and therefore these had to be 

achieved explicitly. 

Aside from the complexities of data management, the 

implementation of OpenMP within MCBEND has the 

following basic structure. 

 Before entering the main parallel region, a global 

shared copy is made of all derived data type structures 

which are required to be thread-private. 

 The main parallel region is opened. 

Process History (Thread 1) 

Next History 

Process History (Thread 2) 

Next History 

Process History (Thread n) 

Next History 

Post Process and 

Output (Thread 1) 

Sequential Section Sequential Section Parallel Section 

Read and setup 
(Thread 1) 



 

 

 Thread-private copies of derived data types are 

created for each thread using globally shared initial 

values. 

 The number of samples within the calculation is 

divided across the number of active threads using an 

OpenMP parallel ‘DO’ loop. 

 Individual samples are tracked in parallel until all 

histories have been completed, with contributions 

from each sample to scoring tallies accumulated 

where necessary (see Section 2.1 for further details). 

 Once tracking has been completed and the parallel 

‘DO’ loop has been exited, any diagnostic data which 

has been accumulated within each individual thread is 

combined. 

 The main parallel region is closed. 

 Output files are generated sequentially. 

In addition to the data management and basic 

structure described above, the final design of the 

OpenMP implementation required consideration of two 

remaining issues; the appropriate approach for 

accumulating scored quantities within the parallel region 

and the design of a new random number generator which 

generates reproducible calculation results. 

2.1 Scoring Tallies 

During the main calculation it is necessary to regularly 

update values from each sample to scoring tallies within 

the parallel region. For the OpenMP implementation, 

scoring is restricted to the Unified Tally (UT) feature of 

MCBEND, see Section 2.3. The use of UT scoring 

meshes can impose large memory usage on a MCBEND 

calculation, specifically when multiple fine resolution 

meshes are used. It is therefore impractical to define the 

data structures which define the UT scoring meshes as 

thread-private since large amounts of memory would be 

copied for each thread used.  

Instead it was decided that the data structures 

responsible for storing accumulated scoring results would 

be shared globally, with each thread in the parallel region 

having write access. In order to avoid ‘data race’ 

conditions and ensure the validity of scored results, only 

one thread at a time is allowed to update values within a 

scoring mesh, achieved using the OpenMP ‘ATOMIC’ 

directive. When multiple threads attempt to 

synchronously update the same scoring mesh then any 

number of threads above unity are forced to wait idle 

(blocked) until the current thread has finished updating. 

While using shared global data for UT scoring meshes 

does not require duplicating large amounts of memory, it 

has the potential to limit the performance of the code 

when increasing the number of processors used. When 

large numbers of threads are active in the parallel region, 

the likelihood that threads are blocked while updating 

scoring meshes is increased. This can result in a reduction 

of the performance gained from using additional 

processors, i.e. non-linear scaling. 

While the issue of having shared global UT scoring 

mesh data potentially reducing the scaling performance is 

a genuine concern, it is overridden by the practical 

limitations duplicating thread-private UT meshes has on 

the memory requirements of typical system architectures 

used to perform MCBEND calculations. Since the 

maximum number of active threads for typical systems 

running MCBEND calculations is currently of the order 

of 10’s, scaling issues relating to scoring within UT 

meshes are not expected to be fundamentally limiting to 

the performance of calculations.  Looking to the future, 

as numbers of available cores increases further thought 

may need to be given to the treatment or scoring meshes. 

2.2 Random Number Generator 

The Monte-Carlo method of a MCBEND calculation uses 

random numbers to decide the outcome of every event 

that occurs within a sample history. In the sequential 

version of MCBEND each random number is provided by 

a combined lagged Fibonacci generator and linear 

congruential random number generator (RNG). The RNG 

provides a sequence of pseudo-random numbers which 

can be based on an initial user provided seed. If identical 

seeds are used for the same calculation then the same 

random number sequence will be generated enabling 

calculations to be exactly re-produced.  

Unlike the sequential version of MCBEND, within 

the main sampling loop of the multi-threaded parallel 

region the exact sequence of samples is undetermined and 

will be different each time the same calculation is 

performed. Here, the n
th

 random number using the 

sequential RNG’s will be used for a different purpose, 

creating different results, making it impossible to re-

produce a calculation exactly. 

In order to provide re-producible calculation results a 

new RNG has been designed for use within the 

multithreaded parallel region. The new RNG is seeded by 

a user supplied value (if present) and the unique sample 

number of the history being tracked. This new ‘thread-

safe’ RNG therefore produces a unique random sequence 

for each sample history, which is independent of the 

order in which samples are tracked. This allows a direct 

comparison between the results from a sequential 

calculation with those from a multi-threaded parallel 

calculation, or indeed multi-threaded parallel calculations 

generated with differing numbers of threads. The ability 

to generate such reproducible calculation results is 

essential for verification of the multi-threaded parallel 

version of MCBEND as detailed in Section 3. The thread-

safe RNG is the default mode when performing multi-

threaded parallel MCBEND calculations. 

2.3 Functional Specification  

The implementation of OpenMP does not cover all of 

the features contained within MCBEND; implementation 

has been limited to a subset of the more modern 

functional units associated with both neutron and gamma 

particle tracking and scoring.  The main functionality 

omissions that will be included later are the IGES based 

CAD import and electron tracking.  Other omissions 

include the DICE and multi group collision processing, 



 

 

legacy source options and some of the more advanced 

variance reduction methods. OpenMP multithreading has 

been applied to the following functionality within 

MCBEND;  

 FG Simple body geometry, including polygon surface 

CAD import. 

 Unified Tally. 

 BINGO (Neutron and Gamma-ray collision 

processing). 

 Splitting and Roulette (variance reduction). 

 Dump and Restart. 

 Hole Geometry (Woodcock tracking). 

 Looping. 

3 Verification  

When creating the multi-threaded parallel version of 

MCBEND, verification that the developed code is correct 

is of the highest importance. The approach for 

verification was as follows;  

 An ‘intermediate’ MCBEND was created that used 

the new random number generator, detailed in 

Section 2.2, with no other modifications. 

 Each calculation in the test set, see Section 4, was 

performed using a sequential version of the 

‘intermediate’ MCBEND. 

 The results from the ‘intermediate’ MCBEND were 

compared against those from a standard MCBEND 

run. While the exact comparison of results for each 

test case is not possible they were confirmed to be 

statistically equivalent, which provides evidence that 

the new thread-safe RNG is producing the same 

distribution (to within acceptable limits) of random 

numbers as the RNG in the standard MCBEND. 

 The results from the parallel OpenMP MCBEND 

were compared with identically seeded results from 

the ‘intermediate’ MCBEND and an exact match was 

expected.  

Using this intermediate MCBEND allows us to prove 

(for the cases in the test set) that the introduction of 

multi-threading has not changed the basic calculation. 

Here, identical comparisons are only possible due to the 

new thread-safe RNG.  

4 Test Set 

For verification purposes the test set comprised 43 cases 

from the standard MCBEND verification set. The 

reduced functionality of the multi-threaded MCBEND 

necessitated this reduced set. Six of these models were 

used for performance testing of the multi-threaded 

version of MCBEND. This subset was chosen to cover 

the range of functionality that has been multi-threaded, as 

detailed in Section 2.3, including both FG and Hole 

geometry features, variance reduction through splitting 

and importance mesh generation, scoring of flux and 

response within UT meshes, different source options and 

collision type processing for neutron, gamma and coupled 

cases. A brief description of each test is given below.  

 311_bingo: An infinite slab model with a 

monoenergetic uniform source. Scoring of flux occurs 

in a user supplied importance map mesh when 

boundaries are crossed.  

 fuel_flask_gamma: A real world fuel flask example 

for gamma-ray dose rate calculations. Includes 

general, nest and array part FG features. Importance 

mesh is generated using the Calculate option and 

scoring occurs for both flux and response functions. 

 s17_t002: Test of the Unified Tally unit for a gamma 

collision case with a line source. 

 s17_tab001: Uses the pipe hole geometry with 

neutron collision processing. Uses looping 

functionality to produce tabular output for both flux 

and response function scored in UT mesh. 

 v2_aspis_onestep: A coupled neutron-gamma case 

within a complex general part geometry. Scoring is 

for both flux and response function in a UT mesh. 

 v2_b2_hole: Similar to the fuel_flask_gamma test 

case with the inclusion of Square and Plate hole 

geometry features. 

5 Results 

Performance testing of the multi-threaded version of 

MCBEND was performed on both Windows and Linux 

platforms. For Windows the testing was run on a 

standalone machine which has 12 processors. For Linux 

the testing was run on a single node of a HPC which has 

16 processors. For each platform the multi-threaded 

version was compiled using the Intel Fortran 2015 

compiler with the appropriate OpenMP option selected. 

All test cases were run with the number of active 

threads in the parallel region ranging from unity to the 

maximum allowed for the specific platform, 12 for 

Windows and 16 for Linux. The results from all 

calculations were compared to those from the 

‘intermediate’ version of MCBEND and were found to 

match identically.  

Performance results were obtained by measuring the 

total computer processing unit time spent within the 

parallel region and comparing this with timings over the 

same code region (the main calculation sampling loop) 

for the ‘intermediate’ version. All performance timings 

were calculated from wall clock times obtained from calls 

to the Fortran system_clock function 

5.1 Scaling  

Scaling results for the v2_aspis_onestep test case from 

Windows and Linux are shown in figures 2 and 3 

respectively. Here the scaling factor is plotted as a 

function of the number of threads used in the calculation. 

For each plot there are two scaling factors defined as,  
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where REFseq is the reference time using the 

sequential ‘intermediate’ version of the code, REF1T is 

the calculation time from the OpenMP version using a 

single thread and RUN is the calculation time from the 

OpenMP version for the number of threads being used 

From figure 2 we find that on Windows the scaling 

factors when using the sequential reference times follow 

a linear trend based on the number of threads used, 

however with a constant offset from the exact (‘perfect’) 

linear scaling trend shown in black. Defining an offset 

factor as, 

 
                 

              
         

the offset between the OpenMP results and the exact 

linear trend is approximately 50%, i.e. for 6 threads the 

speed up factor is 4 and for 12 threads the speed up factor 

is 8. 

The linear trend seen in the scaling factors of figure 2 

are a positive sign that OpenMP has been implemented 

correctly, and that performance issues related to the 

scoring (noted in Section 2.1) are not apparent when 

using the order of 10 threads. However, the relatively 

large offset factor noted above is less positive. While an 

offset factor is always expected when implementing 

OpenMP a value of 50% is greater than expected. A 

discussion of reasons behind this offset factor is given in 

Section 6. 

 

 

Figure 2. Scaling results for the v2_aspis_onestep test case on 

Windows. (blue) Scaling factor when the sequential model is 

used as reference run time. (red) Scaling factor when the 

OpenMP model with a single thread is used as the reference run 

time. (black) Exact linear scaling. 

 

 

Figure 3. Scaling results for the v2_aspis_onestep test case on 

Linux. (blue) Scaling factor when the sequential model is used 

as reference run time. (red) Scaling factor when the OpenMP 

model with a single thread is used as the reference run time. 

(black) Exact linear scaling. 

From figure 3 we find that the scaling results for 

Linux have the same form as those found for Windows. 

The scaling factors again follow a linear trend based on 

the number of threads used. However the offset factor 

seen when using the sequential reference times are larger 

than those found under Windows. Here the offset factor is 

of the order 120%, i.e using 8 threads results in a scaling 

factor of slightly less than 4 and using 16 threads results 

is a scaling factor of slightly less than 8. 

It should be noted that all models within the test set 

exhibit scaling behaviour of the same form as that shown 

for the v2_aspis_onestep case, and as such these results 

are not displayed. 

5.2 Test Set Performance  

In addition to the scaling results presented above, the 

performance of all test set models under Windows and 

Linux are presented in tables 1 and 2 respectively. Here, 

SFSEQ is the scaling factor when using sequential times as 

the reference, SF1T is the scaling factor when using time 

from OpenMP with a single thread as the reference and 

the RUN times are those obtained with the maximum 

number of threads available on each platform,  

Table 1. Windows test set performance results. 

Test Name REFseq(s) REF1T(s) RUN(s) SFseq SF1T 

311_bingo 42.29 68.89 6.77 6.24 10.17 

fuel_flask_gamma 94.64 119.12 12.54 7.54 9.49 

S17_t002 32.51 46.69 4.6 7.06 10.14 

S17_tab001 288.47 288.23 30.60 9.42 9.41 

v2_aspis_onestep 100.76 128.09 12.43 8.10 10.30 

v2_b2_holw 114.75 149.82 14.60 7.85 10.26 

Table 2. Linux test set performance results. 

Test Name REFseq(s) REF1T(s) RUN(s) SFseq SF1T 

311_bingo 14.71 35.15 2.37 6.2 14.81 

fuel_flask_gamma 33.6 59.75 6.38 5.26 9.35 

S17_t002 10.86 21.21 1.96 5.53 10.81 

S17_tab001 100.12 180.56 19.24 5.2 9.38 

v2_aspis_onestep 29.41 59.54 4.05 7.26 14.70 

v2_b2_holw 39.95 70.11 7.99 4.99 8.76 

 

From table 1 we find that the scaling factor when 

using the sequential reference times ranges from ~6-9.5 

when using the maximum 12 threads. The offset factor 

for these results ranges from ~25-100% with an average 

offset factor of ~60%. 

From table 2 we find that the scaling factor when 

using the sequential reference times ranges from ~5-7 

when using the maximum 16 threads. The offset factor 

for these results ranges from ~120-200% with an average 

offset factor of ~180%. The performance results for the 

Linux platform are therefore consistently poorer than 

those seen under Windows. 



 

 

6 Discussion and Conclusions 

The magnitude of the difference in scaling factors 

observed when the OpenMP model with a single thread 

and the sequential model were used as the reference was 

not expected.  The same source code was used to build 

the sequential and OpenMP versions that were used for 

performance testing. The only difference was the build 

option to enable OpenMP.  What we have observed is 

that OpenMP running a single thread is approximately 

twice as slow as sequential code on Windows and 

between two and three times as slow on Linux. 

An analysis of this performance issue using a simple 

test program revealed a problem associated with 

accessing data that is private to a thread but declared 

outside the scope of the parallel region, for example, 

Fortran module data declared using the OpenMP 

‘THREADPRIVATE’ clause.  For production code we 

use the Intel Fortran compiler and we have seen the 

problem using versions 13, 15 & 16 on the Windows and 

Linux operating systems.  Intel has informed us that the 

performance issue is caused by additional run time 

checking that the data exists. Intel suggested not using 

THREADPRIVATE. This solution would require 

considerable re-factoring and is not a desirable option for 

us at this time. 

Trials with version 6.1 of the Gfortran compiler on 

Linux do not show this problem and the difference 

between the OpenMP model with a single thread and the 

sequential case is of the order of a few percent.  We are 

considering using an alternative compiler for the 

production version of the OpenMP MCBEND. 

Another aspect of the performance is the memory use, 

especially as reducing the memory requirements of a 

parallel run is the main driver for this work.  A multi-

threaded case uses more memory than a sequential case 

but less than the equivalent ‘grid’ case.  For example, a 

calculation using 12 threads uses four times the memory 

of a sequential calculation.  This is a significant saving 

compared to the ‘grid’ option. 

In conclusion we are very pleased with the linear 

nature of the scaling graphs which show, at least for the 

current test cases and current number of threads, that we 

have not yet reached a point where there is excessive 

interaction between threads.  The main objective of 

reducing the memory requirements of a parallel 

calculation by using OpenMP has been met. The highest 

priority for us is to effectively remove the difference in 

offset factor between OpenMP with a single thread and 

the sequential case before we would consider a 

production version of MCBEND with multi-threading. 

 

References 

 

1. P. Cowan, G. Dobson, J. Martin, Release of 

MCBEND11, ICRS12-RPSD2012, Nara, Japan. 

2. A. Bird and T. Fry, Visual Workshop 2: A Model 

Viewer, Editor and Results Display Package for the 

Answers Shielding and Criticality Codes, ICRS12-

RPSD2012, Nara, Japan. 

3. OpenMP Architecture Review Board OpenMP 

Application Program Interface Version 3.0, (2008). 


